

INDIAN SCHOOL AL WADI AL KABIR DEPARTMENT OF COMMERCE

CLASS -XI- ASSESSMENT- I -2023-24

DATE: /09/2023

ANSWER KEY- ECONOMICS

MARKS: 80

Q. No.	SECTION A: STATISTICS	Marks
1	A: a	1
2	A: d	1
3	A: d	1
4	A: a	1
5	A: b	1
6	A: b	1
7	A: b	1
8	A: c	1
9	A: b	1
10	A: c	1
11	WULIPLE BAR DIAGRAM BIRTH RATE 0 <	3

	Scale- ½ mk					
	Drawing- 1 mk					
12				3		
	Marks	Frequency	Cumulative			
	40	(f)	Frequency			
	10-20	42	42			
	20-30	38	80 (c.f.)			
	(<i>l</i> ₁) 30–40	120 (f)	200			
	40-50	84	284			
	50-60	48	332			
	50-70	30	308			
	70-80	31 N = 200	299			
		N = 399				
	M =	Size of $\left(\frac{N}{2}\right)$ th item				
		Size of $\left(\frac{399}{2}\right)$ th item				
	Hence median lies in th	Size of 199.5th item				
	Colu 16 mk	ic class 50–10.				
	Colu- ⁷ 2 IIIK					
	Size - 1 mk					
	Formula- ⁴ 2 IIIK					
	Calcul-1 mk					
	$\frac{N}{2}$ - c.f.					
	$\mathbf{M} = l_1 + \frac{2}{\mathbf{f}} \times i$					
	$\frac{399}{2} - 80$					
	$= 30 + \frac{2}{120} \times 10$					
	$= 20 \pm \frac{199.5 - 80}{2} \times 10 = 20 \pm 119.5 \times 10$					
	$= 30 + \frac{120}{120} \times 10 = 30 + \frac{120}{120} \times 10$					
12	a A manurable characteristic wh	vich tekes different velue e	t different points of time and in	2+2		
15	different circumstance is called a	veriable. Different veriable	la varias differently and	272		
	depending on the way they yerry	they are breadly alogaified	le valles differently and	2 mlr		
	Discrete and Continuous variable	uney are broadly classified	i into two types.	2-111K-		
	Discrete and Continuous variable		t of volves while a continuous	1].		
	A discrete variable is one that can	I only take on a specific se	t of values, while a continuous	1 IIIK		
	variable is one that call take on an	ly value within a certain ra	ange. The main unterence	dafi 1		
	between discrete and continuous		anables can be counted, while	den+ 1		
	continuous variables can be meas	ured.				
	For example, the number of child	ren in a family is a discret	e variable, because it can only	тк eg		
	take on whole number values such	h as $0, 1, 2$, etc. On the oth	her hand, the height of a person			
	is a continuous variable, because	it can take on any value w	outhin a certain range, such as			
	between 1 and 2 meters			21		
	b.			2 -mk-		
	1. A frequency distribution is a rep	presentation, either in a gr	aphical or tabular format, that			
	displays the number of observat	tions within a given interv	al.			
	ii. Exclusive series is that series in	n which the upper limit is	not included in that class and is			
	included in upcoming class. The	exclusive series is a type o	of continuous series. For			

	example: - 0-110, 110-120, 120-130, 130-140, 140-150 we can see that upper limit of the class is included in the next class interval				
	class is included in the next class into	<i>cı v a</i> ı.			+1mk
14	A: d A: d (1 – mark each) A: a A: c				4
15					4
	$\begin{array}{c c} \text{Marks} & \text{Mid-value} \\ (X) & \left(m = \frac{l_1 + l_2}{2}\right) & \text{Sta} \\ \end{array}$	umber of idents or equency (f)	Deviation (d = m - A) (A = 25)	Multiple of Deviation and Frequency (fd)	
	$0-10 \frac{0+10}{2} = 5$	20	5 - 25 = -20	$20 \times -20 = -400$	
	$10-20 \frac{10+20}{2} = 15$	24	15 - 25 = -10	$24 \times -10 = -240$	
	$20-30 \frac{20+30}{2} = 25$	40	25 - 25 = 0	$40 \times 0 = 0$	
	$30-40 \frac{30+40}{2} = 35$	36	35 - 25 = +10	$36 \times +10 = +360$	
	$40-50 \frac{40+50}{2} = 45$	20	45 - 25 = +20	$20 \times + 20 = + 400$	
	Σ	f = 140		$\Sigma fd = 120$	
	$\overline{\mathbf{X}} = \mathbf{A} + \frac{\Sigma \mathbf{fd}}{\Sigma \mathbf{f}}$ $= 25 + 0.86$				
	= 25.86 Columns - $\frac{1}{2}$ mk each				
	Formula $-\frac{72}{100}$ mk Final ans n calculation $-1.1/2$ mk				
16					2+2+2
	40 35 30 25 20 0 15 10 5 10 15	20 2	25 30 35 4 Marks		

17				-					6
	1.	Class iterval (X)	$ (\mathbf{m} = \frac{l_1 + l_2}{2}) $	Frequency (f)	Deviation (d = m - A) (A = 45)	$\begin{array}{c} \text{Step-}\\ \text{deviation}\\ \left(d' = \frac{d}{C}\right)\\ (C = 10) \end{array}$	Multiple of Step- deviation and Frequency (fd')		
		0-10	5	12	- 40	- 4	- 48		
		0-20	15	16	- 30	- 3	- 48		
	2	20-30	25	32	- 20	- 2	- 64		
	5	30-40	35	52	- 10	- 1	- 52		
	4	10-50	45	42	0	0	0		
	5	50-60	55	32	10	1	32		
	e	50-70	65	18	20	2	36		
	7	70-80	75	12	30	3	36		
				$\Sigma f = 216$			$\Sigma fd' = -108$		
			1/ 1	1/ 1			4 1		
	Formul CaL n F	a – ½ m Final ans	¹ ⁄2 mk k - 1. ¹ ⁄2 mk	¹ ∕2 mK	lmk	lmk	lmκ		
		$\overline{\mathbf{X}} = A$ = 4 = 4	$A + \frac{\Sigma f d'}{\Sigma f} \times C$ $45 + \frac{-108}{216} \times 1$ $5 - 5 = 40$	0					
			SECTIO	N B: MICRO	O ECONOMI	CS			
18	A: c								1
19	A: d								1
20	It means that the consumer prefers a particular bundle over the other bundle if the former					1			
21	A: d			8		8			1
22	A: b								1
23	A: a								1
24	A: a								1
25	A: a								1
26	A: b								1
27	A: a								1

28	Q. 1. What does movement along PPC indicate?Ans. Movement along PPC indicates marginal opportunity cost or marginal rate of transformation.Q.2. PPC is concave to the origin. What does it indicate?Ans. It indicates that, as resources are shifted from Opportunity-1 to Opportunity-2, marginal opportunity cost tends to rise.Q.3. What is the Slope of PPC? What does it show?Ans. Slope of PPC refers to MRT (marginal rate of transformation). It shows the amount of Good-Y that needs to be sacrificed for producing every additional unit of Good-X. Slope of PPC = $\frac{\Delta Y}{\Delta X}$. It is also called marginal opportunity cost.[Note: There is no difference between marginal opportunity cost and marginal rate of transformation. Both are indicated by the slope of PPC.]	1+1+ $\frac{1}{2}+\frac{1}{2}$
29	Indifference curve analysis: An indifference curve depicts all the combinations of two goods that provide the consumer with equal satisfaction. When the Budget line is tangent to the indifference curve, a consumer will be in equilibrium, according to the indifference curve approach. (Draw n Explain the graphs)	3
30	a. Substitute goods: Pepsi n Cola – Explain. Diag -1mk Expl – 1 mk b. Use a utagram and economic theory to analyse the inpact of the demand for cars in mode. s. When the prices of petrol and diesel are cut, the demand for cars is expected to rise. Because car and petrol are complementary goods. It implies that demand curve for cars will shift to the right. More cars are demanded at their existing price. Fig. 17 illustrates this situation. Initially PK cars were purchased. As price of petrol and diesel decreases, PS cars are purchased even when price of cars is constant. Accordingly, demand curve for cars shifts forward from D to D ₁ . Same as first one	2+2
31	Same as first one. a. When prices rise demand falls b. Rises c. A given period of time and given price	4

	d. Giffen goods	
	1 mark each	
32	The production function of a firm depicts the relationship between the inputs used in the production process and the final output. It specifies how many units of different inputs are needed in order to produce the maximum possible output. In short run, a firm cannot change all the inputs, which means that the output can be increased (decreased) only by employing more (less) of the variable factor (labour). It is generally assumed that in short run a firm does not have sufficient or enough time to vary its fixed factors such as, installing a new machine, etc. Hence, the output levels vary only because of varying employment levels of the variable factor. In long run, a firm can change all its inputs, which means that the output can be increased (decreased) by employing more (less) of both the inputs – variable and fixed factors. In the long run, all inputs (including capital) are variable and can be changed according to the required levels of output Defi-1 mk S.R – 1.1/2 mk	4
33	 a. 1. The demand for textbooks is inelastic because even if the price rises the demand will never change. – 1 mk 2. The demand for cars is elastic as it is a luxury good so when the price of a car goes up, the demand for it comes down- 1 mk b. New Quantity (Q₁) = 500 units Rise in Price (ΔP) = ₹ 10 Original Quantity (Q) = 600 units Original Price (P) = ₹ 30 Change in Quantity (ΔQ) = -100 units New Price (P₁) = ₹ 40 Elasticity of Demand (ED) = ? 	2+2+2
	Price Elasticity of demand (ED) = $\frac{\Delta Q}{\Delta P} \times \frac{P}{Q} = \frac{-100}{10} \times \frac{30}{600} = (-)0.5$ ED = (-)0.5 (Demand is inelastic as ED < 1) Negative sign indicates the inverse relationship between price and quantity demanded. ¹ / ₂ mk Formula - ¹ / ₂ mk Ans n Expl - 1 mk c. The horizontal demand curve parallel to X-axis implies that the elasticity of demand is infinite 1 mk $\int_{\frac{Q}{2}}^{\frac{Q}{2}} \frac{1}{\int_{\frac{Q}{2}}^{\frac{Q}{2}} \frac{1}{\int_{\frac{Q}$	

